Name	Class	Date
Practice		Form G
Rational Exponents an	d Radicals	
What is the value of eac	h expression?	
1. $\sqrt[3]{64}$ 4	2. $\sqrt[3]{125}$ 5	3. $\sqrt[5]{32}$ 2
4. $\sqrt{100}$ 10	5. ∜1 1	6. √225 15
7 . ∛729 9	8. √289 17	9. $\sqrt[3]{243}$ 3 $\sqrt[3]{3^2}$
Write each expression in	n radical form.	
10. $b^{\frac{3}{2}} \sqrt[2]{b^3}$	11. $(36x)^{\frac{1}{2}} 6\sqrt{x}$	12. $25y^{\frac{1}{2}}$ 25 \sqrt{y}
13. $81s^{\frac{2}{3}}$ 81 $\sqrt[3]{s^2}$	14. $(72b)^{\frac{1}{2}} 6\sqrt{2b}$	15. $(125a)^{\frac{2}{3}}$ 25 $\sqrt[3]{a^2}$
16. $(40x)^{\frac{1}{3}} 2 \sqrt[3]{5x}$	17. $36t^{\frac{1}{4}}$ 36 $\sqrt[4]{t}$	18. $(99r)^{\frac{1}{2}}$ 3 $\sqrt{11r}$
Write each expression in	n exponential form.	
19. $\sqrt[3]{b^4} b^{\frac{4}{3}}$	20. $\sqrt{(3x)^4}$ 9 x^2	21. $\sqrt[3]{125d^4}$ 5d⁴
22. $\sqrt{49a}$ 7 $a^{\frac{1}{2}}$	23. $\sqrt[3]{(64b)^2}$ $16b^{\frac{2}{3}}$	24. $\sqrt[4]{256b^5}$ 4b ⁵ / ₄
25 . $\sqrt{144d^4}$ 12 d^2	26. $\sqrt[3]{(27x)^2}$ $9x^{\frac{2}{3}}$	27. $\sqrt{625a^5}$ 25a⁵
28. You can use the form	nula $S = 10m^{\frac{2}{3}}$ to approximate the	e surface area S, in

square centimeters, of a horse with mass m, in grams. What is the surface area of a horse with a mass of 4.5×10^5 grams? Round your answer to the nearest whole square centimeter. **about 58,723 sq cm**

Name	Class	Date

Practice (continued)

Form G

Rational Exponents and Radicals

Simplify each expression using the properties of exponents, and then write the expression in radical form.

- **29.** $\left(a^{\frac{2}{3}}\right)\left(a^{\frac{2}{3}}\right)\sqrt[3]{a^4}$ **30.** $b^{\frac{1}{3}}(ab)^{\frac{1}{2}}\sqrt{a}\sqrt[6]{b^5}$ **31.** $(2x^3)\left(4x^{\frac{1}{3}}\right) \sqrt[8]{x^{10}}$ **32.** $(27y)^{\frac{1}{3}}(64y)^{\frac{1}{3}}$ **12** $\sqrt[3]{y^2}$ **33.** $(25x)^{\frac{1}{2}}\left(x^{\frac{1}{2}}\right)$ **5x 34.** $(81s)^{\frac{1}{3}}s^{\frac{5}{6}}$ **3** $\sqrt[3]{3}\sqrt[6]{s^7}$ Write each expression in exponential form. Simplify when possible.
- **35.** $\sqrt[3]{a^5} + \sqrt[3]{a} = \frac{5}{3} + \frac{1}{a^3}$ **36.** $5\sqrt[3]{b^4} \sqrt[3]{b^4} = \frac{4}{4b^3}$
- **37.** $\sqrt[4]{81d^3} \sqrt[3]{125d^4}$ $3d^{\frac{3}{4}} 5d^{\frac{4}{3}}$ **38.** $\sqrt[3]{(27x)^2} + \sqrt[4]{256x^2}$ $9x^{\frac{2}{3}} + 4x^{\frac{1}{2}}$
- **39.** To estimate the age of an organism, archaeologists measure the amount of carbon-14 left in its remains. The approximate amount of carbon-14

remaining after 5000 years can be found using the formula $A = A_0 (2.7)^{-\frac{3}{5}}$, where A_0 is the initial amount of carbon-14 in the sample that is tested. How much carbon-14 is left in a sample that is 5000 years old and originally contained 5.0×10^{-3} grams of carbon-14? Write your answer in scientific notation. about 2.8×10^{-3} grams

- **40.** Remember that the radius *r* of a sphere that has volume *V* is $r = \sqrt[3]{\frac{3V}{4\pi}}$. A ping-pong ball has a volume of about 2.045 in.³. What is the approximate radius of a ping-pong ball? Use 3.14 for π . Round your answer to the nearest tenth. about 0.8 in.
- **41. Reasoning** Show that $\sqrt[4]{a^2} = \sqrt{a}$ by rewriting $\sqrt[4]{a^2}$ in exponential form. $\sqrt[4]{a^2} = (a^2)^{\frac{1}{4}} = a^{\frac{2}{4}} = a^{\frac{1}{2}} = \sqrt{a}$