\qquad
\qquad
\qquad

Practice

Rational Exponents and Radicals

What is the value of each expression?

1. $\sqrt[3]{64} 4$
2. $\sqrt[3]{125} 5$
3. $\sqrt[5]{32} 2$
4. $\sqrt{100} 10$
5. $\sqrt[4]{1} 1$
6. $\sqrt{225} 15$
7. $\sqrt[3]{729} 9$
8. $\sqrt{289} 17$
9. $\sqrt[3]{243} \quad 3 \sqrt[3]{3^{2}}$

Write each expression in radical form.
10. $b^{\frac{3}{2}} \sqrt[2]{b^{3}}$
11. $(36 x)^{\frac{1}{2}} 6 \sqrt{x}$
12. $25 y^{\frac{1}{2}} 25 \sqrt{y}$
13. $81 s^{\frac{2}{3}} 81 \sqrt[3]{s^{2}}$
14. $(72 b)^{\frac{1}{2}} 6 \sqrt{2 b}$
15. $(125 a)^{\frac{2}{3}} 25 \sqrt[3]{a^{2}}$
16. $(40 x)^{\frac{1}{3}} 2 \sqrt[3]{5 x}$
17. $36 t^{\frac{1}{4}} 36 \sqrt[4]{t}$
18. $(99 r)^{\frac{1}{2}} 3 \sqrt{11 r}$

Write each expression in exponential form.
19. $\sqrt[3]{b^{4}} b^{\frac{4}{3}}$
20. $\sqrt{(3 x)^{4}} 9 x^{2}$
21. $\sqrt[3]{125 d^{4}} 5 d^{\frac{4}{3}}$
22. $\sqrt{49 a} 7 a^{\frac{1}{2}}$
23. $\sqrt[3]{(64 b)^{2}} 16 b^{\frac{2}{3}}$
24. $\sqrt[4]{256 b^{5}} 4 b^{\frac{5}{4}}$
25. $\sqrt{144 d^{4}} 12 d^{2}$
26. $\sqrt[3]{(27 x)^{2}} 9 x^{\frac{2}{3}}$
27. $\sqrt{625 a^{5}} 25 a^{\frac{5}{2}}$
28. You can use the formula $S=10 m^{\frac{2}{3}}$ to approximate the surface area S, in square centimeters, of a horse with mass m, in grams. What is the surface area of a horse with a mass of 4.5×10^{5} grams? Round your answer to the nearest whole square centimeter. about $58,723 \mathrm{sq} \mathrm{cm}$
\qquad
\qquad
\qquad

Rational Exponents and Radicals

Simplify each expression using the properties of exponents, and then write the expression in radical form.
29. $\left(a^{\frac{2}{3}}\right)\left(a^{\frac{2}{3}}\right) \sqrt[3]{a^{4}}$
30. $b^{\frac{1}{3}}(a b)^{\frac{1}{2}} \sqrt{a} \sqrt[6]{b^{5}}$
31. $\left(2 x^{3}\right)\left(4 x^{\frac{1}{3}}\right) 8 \sqrt[3]{x^{10}}$
32. $(27 y)^{\frac{1}{3}}(64 y)^{\frac{1}{3}} \quad 12 \sqrt[3]{y^{2}}$
33. $(25 x)^{\frac{1}{2}}\left(x^{\frac{1}{2}}\right) 5 x$
34. $(81 s)^{\frac{1}{3}} s^{\frac{5}{6}} \quad 3 \sqrt[3]{3} \sqrt[6]{s^{7}}$

Write each expression in exponential form. Simplify when possible.
35. $\sqrt[3]{a^{5}}+\sqrt[3]{a} a^{\frac{5}{3}}+a^{\frac{1}{3}}$
36. $5 \sqrt[3]{b^{4}}-\sqrt[3]{b^{4}} 4 b^{\frac{4}{3}}$
37. $\sqrt[4]{81 d^{3}}-\sqrt[3]{125 d^{4}} 3 d^{\frac{3}{4}}-5 d^{\frac{4}{3}}$
38. $\sqrt[3]{(27 x)^{2}}+\sqrt[4]{256 x^{2}} 9 x^{\frac{2}{3}}+4 x^{\frac{1}{2}}$
39. To estimate the age of an organism, archaeologists measure the amount of carbon-14 left in its remains. The approximate amount of carbon-14 remaining after 5000 years can be found using the formula $A=A_{0}(2.7)^{-\frac{3}{5}}$, where A_{0} is the initial amount of carbon-14 in the sample that is tested. How much carbon-14 is left in a sample that is 5000 years old and originally contained 5.0×10^{-3} grams of carbon-14? Write your answer in scientific notation. about 2.8×10^{-3} grams
40. Remember that the radius r of a sphere that has volume V is $r=\sqrt[3]{\frac{3 V}{4 \pi}}$. A ping-pong ball has a volume of about $2.045 \mathrm{in} .^{3}$. What is the approximate radius of a ping-pong ball? Use 3.14 for π. Round your answer to the nearest tenth. about 0.8 in.
41. Reasoning Show that $\sqrt[4]{a^{2}}=\sqrt{a}$ by rewriting $\sqrt[4]{a^{2}}$ in exponential form.
$\sqrt[4]{a^{2}}=\left(a^{2}\right)^{\frac{1}{4}}=a^{\frac{2}{4}}=a^{\frac{1}{2}}=\sqrt{a}$

