Practice

Form G

Quadratic Graphs and Their Properties

Identify the vertex of each graph. Tell whether it is a minimum or a maximum.

Order each group of quadratic functions from widest to narrowest graph.

7. $y = -3x^2$, $y = -5x^2$, $y = -1x^2$ 8. $y = 4x^2$, $y = -2x^2$, $y = -6x^2$ $-x^{2}$; $-3x^{2}$; $-5x^{2}$ $-2x^2$; $4x^2$; $-6x^2$ **9.** $y = x^2$, $y = \frac{1}{3}x^2$, $y = 2x^2$ **10.** $y = \frac{1}{6}x^2$, $y = \frac{1}{4}x^2$, $y = \frac{1}{2}x^2$ $\frac{1}{3}x^2$; x^2 ; $2x^2$ $\frac{1}{6}x^2$; $\frac{1}{4}x^2$; $\frac{1}{2}x^2$

Graph each function.

Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

lame	Class	Date

Practice (continued)

Ν

Quadratic Graphs and Their Properties

17. For a physics experiment, the class drops a golf ball off a bridge toward the pavement below. The bridge is 75 feet high. The function $h = -16t^2 + 75$ gives the golf ball's height *h* above the pavement (in feet) after *t* seconds. Graph the function. How many seconds does it take for the golf ball to hit the pavement? about 2.2 s

18. A relief organization flew over a village and dropped a package of food and medicine. The plane is flying at 1000 feet. The function

 $h = -16t^2 + 1000$ gives the package's height h above the ground

(in feet) after t seconds. Graph the function. How many seconds

does it take for the package to hit the ground? about 8 s

Identify the domain and range of each function.

19. $y = 5x^2 - 5$	20. $y = -\frac{1}{2}x^2 + 3$
D: all real numbers; R: $y \ge -5$	D: all real numbers; R: $y \le 3$

21. $y = \frac{3}{5}x^2 - 2$ **22.** $f(x) = -9x^2 + 1$ **D:** all real numbers; R: $y \ge -2$ **D:** all real numbers; R: $f(x) \le 1$

Use a graphing calculator to graph each function. Identify the vertex and axis of symmetry.

23. $y = 2.75x^2 + 3$	24. $y = -\frac{1}{3}x^2 - 8$	25. $y = -2x^2 + 7$
(0, 3); x = 0;	(0, -8); x = 0;	(0, 7); <i>x</i> = 0;

26. Writing Discuss how the function $y = x^2 + 4$ differs from the graph $y = x^2$.

The parent function of $y = x^2 + 4$ is $y = x^2$. Both graphs open the same width and are parabolas that open up. The graph of $y = x^2$ has a vertex of (0, 0). The graph of $y = x^2 + 4$ has a vertex of (0, 4) — it is 4 units above the graph of $y = x^2$.

27. Writing Explain how you can determine if the parabola opens up or down by simply examining the equation.

The coefficient of the x^2 term determines if the parabola opens up or down. A positive coefficient, the graph opens up; a negative coefficient, the graph opens down.

Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.