\qquad Class \qquad Date \qquad

Practice

Quadratic Graphs and Their Properties

Identify the vertex of each graph. Tell whether it is a minimum or a maximum.

$(1,-3)$; minimum
2.

$(3,-1)$; minimum
3.

(1, 5); maximum

Graph each function.

4. $f(x)=3 x^{2}$

5. $f(x)=-2.5 x^{2}$

6. $f(x)=-\frac{1}{5} x^{2}$

Order each group of quadratic functions from widest to narrowest graph.

7. $y=-3 x^{2}, y=-5 x^{2}, y=-1 x^{2}$
$-x^{2} ;-3 x^{2} ;-5 x^{2}$
8. $y=x^{2}, y=\frac{1}{3} x^{2}, y=2 x^{2}$
$\frac{1}{3} x^{2} ; x^{2} ; 2 x^{2}$
9. $y=4 x^{2}, y=-2 x^{2}, y=-6 x^{2}$
$-2 x^{2} ; 4 x^{2} ;-6 x^{2}$
10. $y=\frac{1}{6} x^{2}, y=\frac{1}{4} x^{2}, y=\frac{1}{2} x^{2}$
$\frac{1}{6} x^{2} ; \frac{1}{4} x^{2} ; \frac{1}{2} x^{2}$

Graph each function.

11. $f(x)=x^{2}+1$

12. $f(x)=-\frac{1}{2} x^{2}+5$

13. $f(x)=x^{2}-2$

14. $f(x)=-3 x^{2}-4$

15. $f(x)=2 x^{2}+1$

16. $f(x)=5 x^{2}-10$

\qquad
\qquad
\qquad

Quadratic Graphs and Their Properties

17. For a physics experiment, the class drops a golf ball off a bridge toward the pavement below. The bridge is 75 feet high. The function $h=-16 t^{2}+75$ gives the golf ball's height h above the pavement (in feet) after t seconds. Graph the function. How many seconds does it take for the golf ball to hit the pavement?
about 2.2 s

18. A relief organization flew over a village and dropped a package of food and medicine. The plane is flying at 1000 feet. The function $h=-16 t^{2}+1000$ gives the package's height h above the ground (in feet) after t seconds. Graph the function. How many seconds does it take for the package to hit the ground?
about 8 s

Identify the domain and range of each function.

19. $y=5 x^{2}-5$

D: all real numbers; R: $\boldsymbol{y} \geq-5$
21. $y=\frac{3}{5} x^{2}-2$

D: all real numbers; R: $y \geq-2$
20. $y=-\frac{1}{2} x^{2}+3$

D: all real numbers; R: $y \leq 3$
22. $f(x)=-9 x^{2}+1$

D: all real numbers; R: $f(x) \leq 1$

Use a graphing calculator to graph each function. Identify the vertex and axis of symmetry.
23. $y=2.75 x^{2}+3$
(0, 3); $x=0$;
24. $y=-\frac{1}{3} x^{2}-8$
($0,-8$); $x=0$;
25. $y=-2 x^{2}+7$
(0,7); $x=0$;
26. Writing Discuss how the function $y=x^{2}+4$ differs from the graph $y=x^{2}$.

The parent function of $y=x^{2}+4$ is $y=x^{2}$. Both graphs open the same width and are parabolas that open up. The graph of $y=x^{2}$ has a vertex of (0,0). The graph of $y=x^{2}+4$ has a vertex of $(0,4)$ - it is 4 units above the graph of $y=x^{2}$.
27. Writing Explain how you can determine if the parabola opens up or down by simply examining the equation.
The coefficient of the x^{2} term determines if the parabola opens up or down. A positive coefficient, the graph opens up; a negative coefficient, the graph opens down.

