Name	Class	Date

Form G

Practice

Factoring to Solve Quadratic Equations

Use the Zero-Product Property to solve each equation.

1. (y+6)(y-4) = 0-6; 42. (3f+2)(f-5) = 05; $-\frac{2}{3}$ 3. (2x-7)(4x+10) = 0 $\frac{7}{2}$; $-\frac{5}{2}$ 4. (8t-7)(3t+5) = 0 $\frac{7}{8}$; $-\frac{5}{3}$ 5. d(d-8) = 00; 86. 3m(2m+9) = 00; $-\frac{9}{2}$

Solve by factoring.

7. $n^2 + 2n - 15 = 0$	8. $a^2 - 15a + 56 = 0$	9. $z^2 - 10z + 24 = 0$
- 5; 3	7; 8	6; 4
10. $8x^2 + 10x + 3 = 0$	11. $3b^2 + 7b - 6 = 0$	12. $5p^2 - 9p - 2 = 0$
$-\frac{3}{4}; -\frac{1}{2}$	$\frac{2}{3}; -3$	2; $-\frac{1}{5}$
13. $w^2 + w = 12$ 3 ; -4	14. $s^2 + 12s = -32$ -4; -8	15. <i>d</i> ² = 5 <i>d</i> 0; 5
16. $3j^2 - 20j = -12$	17. $12y^2 + 40y = 7$	18. $27r^2 + 69r = 8$
<u>2</u> ; 6	$\frac{1}{6}$, $-\frac{7}{2}$	$\frac{1}{9}; -\frac{8}{3}$

Use the Zero-Product Property to solve each equation. Write your solutions as a set in roster form.

- **19.** $k^2 11k + 30 = 0$ **20.** $x^2 - 6x - 7 = 0$ **21.** $n^2 + 17n + 72 = 0$ **23.** $n^2 + 17n + 72 = 0$ **24.** $n^2 + 17n + 72 = 0$ **25.** $n^2 + 17n + 72 = 0$ **26.** $n^2 + 17n + 72 = 0$ **27.** $n^2 + 17n + 72 = 0$
- 22. The volume of a sandbox shaped like a rectangular prism is 48 ft³. The height of the sandbox is 2 feet. The width is *w* feet and the length is *w* + 2 feet. Use the formula V = lwh to find the value of *w*.
 4
- 23. The area of the rubber coating for a flat roof was 96 ft². The rectangular frame the carpenter built for the flat roof has dimensions such that the length is 4 feet longer than the width. What are the dimensions of the frame?
 8 ft by 12 ft
- 24. Ling is cutting carpet for a rectangular room. The area of the room is 324 ft². The length of the room is 3 feet longer than twice the width. What should the dimensions of the carpet be?
 12 ft by 27 ft

Name	Class	Date
Practice (continued)		Form

Factoring to Solve Quadratic Equations

Write each equation in standard form. Then solve.

25. $21x^2 + 5x - 35 = 3x^2 - 4x$ **26.** $3n^2 - 2n + 1 = -3n^2 + 9n + 11$ **18x² + 9x - 35;** $-\frac{5}{3}$; $\frac{7}{6}$ **26.** $3n^2 - 2n + 1 = -3n^2 + 9n + 11$ **6n² - 11n - 10;** $\frac{5}{2}$; $-\frac{2}{3}$

Find the value of *x* as it relates to each rectangle or triangle.

27. Area = 60 cm^2 6 cm x + 4

29. Area =
$$20 \text{ in.}^2$$
 5 in.

30. Area = 150 m^2 **12 m**

Reasoning For each equation, find k and the value of any missing solutions.

31. $x^2 - kx - 16 = 0$ where -2 is one solution of the equation. **6**; **8**

- **32.** $x^2 6x = k$ where 10 is one solution of the equation. **40**; -4
- **33.** $kx^2 13x = 5$ where $-\frac{1}{3}$ is one solution of the equation. **6**; $\frac{5}{2}$
- **34.** Writing Explain how you solve a quadratic equation by factoring. Write the equation in standard form equal to zero. Write two sets of parentheses. Find factors of the x^2 term. Find factors of the constant term. Find the combination of factors whose sum equals the *x*-term.