Name	Class	Date	_
Practice		Form G	
Graphing Radical Functions	3		
Graph each function.			
1. $y = \sqrt{x} + 3$	2. $y = \sqrt{x} - 1$	3. $y = \sqrt{x+5}$	
4. $y = \sqrt{x-3}$	5. $y = -2\sqrt{x} - 2$	6. $y = \frac{1}{4}\sqrt{x-1} + 5$	

Solve each square root equation by graphing. Round the answer to the nearest hundredth, if necessary. If there is no solution, explain why.

7. $\sqrt{x+6} = 9$ 8. $\sqrt{4x-3} = 5$ 9. $\sqrt{3x-5} = \sqrt{1-x}$ 10. If you know the area *A* of a circle, you can use the equation $r = \sqrt{\frac{A}{\pi}}$ to find the radius *r*. a. Graph the equation.

b. What is the radius of a circle with an area of 350 ft²?

Graph each function.

11.
$$y = -\sqrt[3]{x} + 2$$
 12. $y = 2\sqrt[3]{x-3}$ **13.** $y = \sqrt[3]{x+3} - 1$

Name	Class	Date		
Practice (continued)		Form	G	
Graphing Radical Functions				

Rewrite each function to make it easy to graph using transformations of its parent function. Describe the graph.

14.
$$y = \sqrt{81x + 162}$$
15. $y = -\sqrt{4x + 20}$
16. $y = \sqrt[3]{125x - 250}$

17. $y = -\sqrt{64x + 192}$
18. $y = -\sqrt[3]{8x - 56} + 4$
19. $y = \sqrt{25x + 75} - 1$

20. $y = \sqrt{0.25x + 1}$
21. $y = 5 - \sqrt{4x + 2}$
22. $y = \sqrt[3]{27x - 54}$

- **23.** To find the radius *r* of a sphere of volume *V*, use the equation $r = \sqrt[3]{\frac{3V}{4\pi}}$. **a.** Graph the equation.
 - **b.** A balloon used for advertising special events has a volume of 225 ft³. What is the radius of the balloon?
- 24. An exercise specialist has studied your exercise routine and says the formula $t = 1.85\sqrt{c+10}$ expresses the amount of time *t*, in minutes, it takes you to burn c calories (cal) while exercising.
 - **a.** Graph the equation.

20. $y = \sqrt{0.25x + 1}$

- b. According to this formula, how long should it take you to burn 100 cal? 200 cal? 300 cal?
- **25.** You can use the equation $t = \frac{1}{4}\sqrt{d}$ to find the time *t*, in seconds, it takes an object to fall *d* feet after being dropped.
 - **a.** Graph the equation.
 - b. How long does it take the object to fall 400 feet?