\qquad Class \qquad Date \qquad

Practice

Graphing Radical Functions
Graph each function.

1. $y=\sqrt{x}+3$
2. $y=\sqrt{x}-1$
3. $y=\sqrt{x+5}$
4. $y=\sqrt{x-3}$
5. $y=-2 \sqrt{x}-2$
6. $y=\frac{1}{4} \sqrt{x-1}+5$

Solve each square root equation by graphing. Round the answer to the nearest hundredth, if necessary. If there is no solution, explain why.
7. $\sqrt{x+6}=9$
8. $\sqrt{4 x-3}=5$
9. $\sqrt{3 x-5}=\sqrt{1-x}$
10. If you know the area A of a circle, you can use the equation $r=\sqrt{\frac{A}{\pi}}$ to find the radius r.
a. Graph the equation.
b. What is the radius of a circle with an area of $350 \mathrm{ft}^{2}$?

Graph each function.

11. $y=-\sqrt[3]{x}+2$
12. $y=2 \sqrt[3]{x-3}$
13. $y=\sqrt[3]{x+3}-1$
\qquad
\qquad
\qquad

Rewrite each function to make it easy to graph using transformations of its

 parent function. Describe the graph.14. $y=\sqrt{81 x+162}$
15. $y=-\sqrt{4 x+20}$
16. $y=\sqrt[3]{125 x-250}$
17. $y=-\sqrt{64 x+192}$
18. $y=-\sqrt[3]{8 x-56}+4$
19. $y=\sqrt{25 x+75}-1$
20. $y=\sqrt{0.25 x+1}$
21. $y=5-\sqrt{4 x+2}$
22. $y=\sqrt[3]{27 x-54}$
23. To find the radius r of a sphere of volume V, use the equation $r=\sqrt[3]{\frac{3 V}{4 \pi}}$.
a. Graph the equation.
b. A balloon used for advertising special events has a volume of $225 \mathrm{ft}^{3}$. What is the radius of the balloon?
24. An exercise specialist has studied your exercise routine and says the formula $t=1.85 \sqrt{c+10}$ expresses the amount of time t, in minutes, it takes you to burn c calories (cal) while exercising.
a. Graph the equation.
b. According to this formula, how long should it take you to burn 100 cal ? 200 cal ? 300 cal ?
25. You can use the equation $t=\frac{1}{4} \sqrt{d}$ to find the time t, in seconds, it takes an object to fall d feet after being dropped.
a. Graph the equation.
b. How long does it take the object to fall 400 feet?
