\qquad
\qquad
\qquad

Practice

Proving Triangles Similar

Determine whether the triangles are similar. If so, write a similarity statement and name the postulate or theorem you used. If not, explain.

$\triangle A B E \sim \triangle D C E$ by the AA ~ Postulate
2.

not similar; only one side and one angle \cong

$\triangle L M N \sim \triangle O P N$ by the AA ~ Postulate
4. A

not similar; only one angle and one side \cong
5.
$\triangle T U V \sim \triangle U W X$ by the SAS ~ Theorem
6.

$\triangle M N L \sim \triangle Q O P ;$
SSS ~ Theorem
7. Given: $\overline{R M} \| \overline{S N}, \overline{R M} \perp \overline{M S}$, $\overline{S N} \perp \overline{N T}$

Prove: $\triangle R S M \sim \triangle S T N$

Statements: 1) $\overline{R M} \| \overline{S N} ; \overline{R M} \perp \overline{M S}$,
$\overline{S N} \perp \overline{N T} 2) \angle M R S \cong \angle N S T ;$
3) $\angle M$ and $\angle N$ are rt. \triangle;
4) $\angle M \cong \angle N$; 5) $\triangle R S M \sim \triangle S T N$;

Reasons: 1) Given; 2) Corresp. \& Post.;
3) Perp. lines form rt. ©;
4) All rt. \& are \cong; 5) AA ~ Post.
8. Given: A bisects $\overline{J K}, C$ bisects $\overline{K L}, B$ bisects $\overline{J L}$

Prove: $\triangle J K L \sim \triangle C B A$

It is given that A, C, and B are the midpoints of $J K, \overline{K L}$, and $\overline{J L}$. Therefore, according to the Midsegment Theorem, $\overline{A B}$ is half the length of $\overline{K L}, \overline{B C}$ is half the length of $\overline{J K}$, and $\overline{A C}$ is half the length of JL. It follows then that $\triangle J K L \sim \triangle C B A$ by the SSS \sim Theorem.
9. A $1.4-\mathrm{m}$ tall child is standing next to a flagpole. The child's shadow is 1.2 m long. At the same time, the shadow of the flagpole is 7.5 m long. How tall is the flagpole? 8.75 m
\qquad
\qquad
\qquad

Proving Triangles Similar

Explain why the triangles are similar. Then find the value of \boldsymbol{x}.

$$
\triangle A B E \sim \triangle D C E
$$

10. $\overline{O P} \cong \overline{N P}, K N=15$,
$L O=20, J N=9$,
$M O=12$

$\overline{O P} \cong \overline{N P}$ means that $\angle P O N \cong \angle P N O$ because if two sides of a \triangle are \cong, the \triangle opposite those sides are $\cong \frac{K N}{L O}=\frac{15}{20}=\frac{3}{4}$ and $\frac{J N}{M O}=\frac{9}{12}=\frac{3}{4}$. So, $\triangle J K N \sim \triangle M L O$ by SAS \sim Thm. $\frac{x}{16}=\frac{3}{4} ; 12$
11. A stick 2 m long is placed vertically at point B. The top of the stick is in line with the top of a tree as seen from point A, which is 3 m from the stick and 30 m from the tree. How tall is the tree? 20 m
12. Thales was an ancient philosopher familiar with similar triangles. One story about him says that he found the height of a pyramid by measuring its shadow and his own shadow at the same time. If the person is 5 - ft tall, what is the height of the pyramid in the drawing? 265 ft

by the AA ~
Post. $\overline{A B} \| \overline{C D}$ means that $\angle A \cong \angle D$ by the Alt. Int. $₫$ Thm. For the same reason, $\angle B \cong \angle C$. $\frac{3 x}{4 x-1}=\frac{14}{18} ; 7$

Identify the similar triangles in each figure. Explain.
14. A

$$
\begin{aligned}
& \triangle A D B \sim \triangle A B C(A A \sim) \\
& \triangle B D C \sim \triangle A B C \text { (AA } \sim \text {); } \\
& \triangle A D B \sim \triangle B D C \\
& \text { (Trans. Prop. of } \sim \triangle \text { s) }
\end{aligned}
$$

15.

16.
 $\triangle T U V \sim \triangle V U W(A A \sim) ;$
$\triangle T U V \sim \triangle X Y V(A A \sim) ;$
$\triangle V U W \sim \triangle X Y V$
(Trans. Prop. of $\sim \triangle S)$;
$U \triangle T U V \sim \triangle T V W$ (AA \sim);

$\triangle T V W \sim \triangle V U W$ (Trans. Prop. of $\sim \triangle s$); $\triangle T V W \sim \triangle X Y V$ (Trans. Prop. of $\sim \triangle s$);
$\triangle X V Z \sim \triangle T V W$ (AA \sim); $\triangle V Y Z \sim \triangle V U W$ (AA \sim); $\triangle V Y Z \sim \triangle X Y V$ (AA \sim);
$\triangle X V Z \sim \triangle X Y V$ (AA \sim); $\triangle V Y Z \sim \triangle X V Z$ (Trans. Prop. of $\sim \triangle$); $\triangle T U V \sim \triangle V Y Z$
(Trans. Prop. of $\sim \triangle s$); $\triangle T U V \sim \triangle X V Z$ (Trans. Prop. of $\sim \triangle s$); $\triangle T V W \sim \triangle V Y Z$
(Trans. Prop. of $\sim \triangle s$); $\triangle V U W \sim \triangle X V Z$ (Trans. Prop. of $\sim \triangle s$)

