Practice

Form G

Chords and Arcs

In Exercises 1 and 2, the $\odot X \cong \odot E$. What can you conclude?

1.

 $\angle QXP \cong \angle RXS \cong \angle AEB \cong \angle DEC$; all radii are congruent; all chords drawn are congruent. Find the value of x.

 $\angle WXY \cong \angle DEF$; $\overline{WY} \cong \overline{DF}$; all radii are congruent.

3.

5.

6. In $\bigcirc X$, \overline{AC} is a diameter and $\overline{ED} \cong \overline{EB}$. What can you conclude about \widehat{DC} and \widehat{CB} ? Explain.

 $\widehat{DC} \cong \widehat{CB}$; because $\overline{ED} \cong \overline{EB}$ and $\overline{XB} \cong \overline{XD}$, \overline{AC} must be a perpendicular bisector of \overline{DB} by the Converse of the Perpendicular Bisector Theorem. This means $\overline{DC} \cong \overline{CB}$, so by Theorem 81, $\widehat{DC} \cong \widehat{CB}$.

7. In $\odot D$, \overline{ZX} is the diameter of the circle and $\overline{ZX} \perp \overline{WY}$. What conclusions can you make? Justify your answer. $\overline{WD} \cong \overline{DY}$ because \overline{ZX} is a perpendicular bisector, and $\widehat{WX} \cong \widehat{XY}$ because of Theorem 83.

Find the value of x to the nearest tenth.

8.

10.

11. In the figure at the right, sphere *O* with radius 15 mm is intersected by a plane 3 mm from the center. To the nearest tenth, find the radius of the cross section $\odot Y$. 14.7 mm

Form G

Practice (continued)

Chords and Arcs

12. Given: $\odot J$ with diameter \overline{HK} ; $\widehat{KL} \cong \widehat{LM} \cong \widehat{MK}$

Prove: $\triangle KIL \cong \triangle KIM$

Statements: 1) $\overline{KI} \cong \overline{KI}$; 2) $\widehat{KL} \cong \widehat{KM}$; 3) $\overline{KM} \cong \overline{KL}$; 4) $\overline{JM} \cong \overline{JL}$; 5) \overline{KH} is the \bot bis. of \overline{ML} ; 6) $\overline{IM} \cong \overline{IL}$; 7) $\triangle KIL \cong \triangle KLM$; Reasons: 1) Refl. Prop. of \cong ; 2) Given; 3) Converse Thm. 81; 4) All radii in a circle are \cong ; 5) Converse of \bot Bis. Thm.; 6) Def. of a bis.; 7) SSS

13. Given: \overline{AC} and \overline{DB} are diameters of $\odot E$.

Prove: $\triangle EAD \cong \triangle ECB$

Statements: 1) \overline{AC} and \overline{DB} are diameters of $\odot E$; 2) $\overline{AE} \cong \overline{CE}$ and

 $\overline{DE} \cong \overline{BE}$; 3) $\angle AED \cong \angle CEB$; 4) $\triangle EAD \cong \triangle ECB$;

Reasons: 1) Given; 2) Def. of radius; 3) Vert. Angles are ≅; 4) SAS

 $\odot N$ and $\odot O$ are congruent. \overline{PQ} is a chord of both circles.

14. If NO = 12 in. and $\overline{PQ} = 8$ in., how long is the radius to the nearest tenth of an inch? **7.2** in.

15. If NO = 30 mm and radius = 16 mm, how long is \overline{PQ} to the nearest tenth of a millimeter? **11.1** mm

16. If radius = 12 m and \overline{PQ} = 9 m, how long is \overline{NO} to the nearest tenth? **22.2** m

17. Draw a Diagram A student draws $\odot X$ with a diameter of 12 cm. Inside the circle she inscribes equilateral $\triangle ABC$ so that \overline{AB} , \overline{BC} , and \overline{CA} are all chords of the circle. The diameter of $\odot X$ bisects \overline{AB} . The section of the diameter from the center of the circle to where it bisects \overline{AB} is 3 cm. To the nearest whole number, what is the perimeter of the equilateral triangle inscribed in $\odot X$? **31 cm**

18. Two concentric circles have radii of 6 mm and 12 mm. A segment tangent to the smaller circle is a chord of the larger circle. What is the length of the segment to the nearest tenth. **20.8 mm**