\qquad Class \qquad
\qquad

Practice

Chords and Arcs

In Exercises 1 and 2, the $\odot \boldsymbol{X} \cong \odot \boldsymbol{E}$. What can you conclude?

1.

2.

$\angle Q X P \cong \angle R X S \cong \angle A E B \cong \angle D E C$; all radii are
congruent; all chords drawn are congruent.
Find the value of \boldsymbol{x}.
3.

4.

5.

$\angle W X Y \cong \angle D E F ; \overline{W Y} \cong \overline{D F} ;$ all radii are congruent.
6. In $\odot X, \overline{A C}$ is a diameter and $\overline{E D} \cong \overline{E B}$. What can you conclude about $\widehat{D C}$ and $\widehat{C B}$? Explain.
$\overline{D C} \cong \overline{C B}$; because $\overline{E D} \cong \overline{E B}$ and $\overline{X B} \cong \overline{X D}, \overline{A C}$ must be a perpendicular bisector of $\overline{D B}$ by the Converse of the Perpendicular Bisector Theorem. This means $\overline{D C} \cong \overline{C B}$, so by Theorem 81, $\overline{D C} \cong \widehat{C B}$.

7. In $\odot D, \overline{Z X}$ is the diameter of the circle and $\overline{Z X} \perp \overline{W Y}$. What conclusions can you make? Justify your answer. $\overline{W D} \cong \overline{D Y}$ because $\overline{Z X}$ is a perpendicular bisector, and $W X \cong X Y$ because of Theorem 83.

Find the value of x to the nearest tenth.

8.

9.

10.

11. In the figure at the right, sphere O with radius 15 mm is intersected by a plane 3 mm from the center. To the nearest tenth, find the radius of the cross section $\odot Y$. 14.7 mm

\qquad
\qquad
\qquad

Chords and Arcs
12. Given: $\odot J$ with diameter $\overline{H K} ; \overline{K L} \cong \widehat{L M} \cong \widehat{M K}$

Prove: $\triangle K I L \cong \triangle K I M$
Statements: 1) $\overline{K I} \cong \overline{K I}$; 2) $\overline{K L} \cong \overline{K M}$; 3) $\overline{K M} \cong \overline{K L}$; 4) $\overline{J M} \cong \overline{J L}$; 5) $\overline{K H}$ is the \perp bis. of $\overline{M L}$; 6) $\overline{I M} \cong \overline{I L} ; 7) \triangle K I L \cong \triangle K L M$; Reasons: 1) Refl. Prop. of \cong; 2) Given; 3) Converse Thm. 81; 4) All radii in a circle are \cong; 5) Converse of \perp Bis. Thm.; 6) Def. of a bis.; 7) SSS

13. Given: $\overline{A C}$ and $\overline{D B}$ are diameters of $\odot E$.

Prove: $\triangle E A D \cong \triangle E C B$
Statements: 1) $\overline{A C}$ and $\overline{D B}$ are diameters of $\odot E$; 2) $\overline{A E} \cong \overline{C E}$ and $\overline{D E} \cong \overline{B E} ; 3) \angle A E D \cong \angle C E B ; 4) \triangle E A D \cong \triangle E C B$;
Reasons: 1) Given; 2) Def. of radius; 3) Vert. Angles are \cong; 4) SAS

$\odot N$ and $\odot O$ are congruent. $\overline{P Q}$ is a chord of both circles.
14. If $N O=12 \mathrm{in}$. and $\overline{P Q}=8 \mathrm{in}$., how long is the radius to the nearest tenth of an inch? 7.2 in.

15. If $N O=30 \mathrm{~mm}$ and radius $=16 \mathrm{~mm}$, how long is $\overline{P Q}$ to the nearest tenth of a millimeter? 11.1 mm
16. If radius $=12 \mathrm{~m}$ and $\overline{P Q}=9 \mathrm{~m}$, how long is $\overline{N O}$ to the nearest tenth? 22.2 m
17. Draw a Diagram A student draws $\odot X$ with a diameter of 12 cm . Inside the circle she inscribes equilateral $\triangle A B C$ so that $\overline{A B}, \overline{B C}$, and $\overline{C A}$ are all chords of the circle. The diameter of $\odot X$ bisects $\overline{A B}$. The section of the diameter from the center of the circle to where it bisects $\overline{A B}$ is 3 cm . To the nearest whole number, what is the perimeter of the equilateral triangle inscribed in $\odot X$? 31 cm
18. Two concentric circles have radii of 6 mm and 12 mm . A segment tangent to the smaller circle is a chord of the larger circle. What is the length of the segment to the nearest tenth. 20.8 mm

