Practice

Triangle Congruence by SSS and SAS

Draw $\triangle MGT$. Use the triangle to answer the questions below.

- **1.** What angle is included between \overline{GM} and \overline{MT} ? $\angle M$
- **2.** Which sides include $\angle T$? \overline{GT} and \overline{TM}
- **3.** What angle is included between \overline{GT} and \overline{MG} ? $\angle G$

Would you use SSS or SAS to prove the triangles congruent? If there is not enough information to prove the triangles congruent by SSS or SAS, write *not enough information*. Explain your answer.

4.

Not enough information; two pairs of corresponding sides are congruent, but the congruent angle is not included. R **5**.

SAS; two pairs of corresponding sides and their included angle are congruent.

6.

SSS; three pairs of corresponding sides are congruent.

7.

Not enough information; two pairs of corresponding sides are congruent, but the congruent angle is not the included angle. 8.

SSS; three corresponding sides are congruent.

9.

SAS; two pairs of corresponding sides and their included right angle are congruent.

10.

Not enough information; one pair of corresponding sides and corresponding angles are congruent, but the other pair of corresponding sides that form the included angle must also be congruent.

11.

SAS; two pairs of corresponding sides and their included vertical angles are congruent.

12. C

SSS or SAS; three pairs of corresponding sides are congruent, or, two pairs of corresponding sides and their included vertical angles are congruent.

Form G

Date

Practice (continued)

Triangle Congruence by SSS and SAS

13. Draw a Diagram A student draws $\triangle ABC$ and $\triangle QRS$. The following sides and angles are congruent:

$$\overline{AC} \cong \overline{OS}$$

$$\overline{AB} \cong \overline{OR}$$

$$\angle B \cong \angle R$$

Based on this, can the student use either SSS or SAS to prove that $\triangle ABC \cong \triangle QRS$? If the answer is no, explain what additional information the student needs. Use a sketch to help explain your answer.

No; $\angle B$ and $\angle R$ are not the included angles for the sides given. To prove congruence, you would need to know either that $\overline{BC} \cong \overline{RS}$ or $\angle Q \cong \angle A$.

14. Given: $\overline{BC} \cong \overline{DC}$, $\overline{AC} \cong \overline{EC}$

Prove: $\triangle ABC \cong \triangle EDC$

Statements

Reasons

1) Given

1) $\overline{BC} \cong \overline{DC}$ 2) $\overline{AC} \cong \overline{EC}$

- 2) Given
- 3) $\angle BCA \cong \angle DCE$
- 3) Vertical \triangle are \cong .
- 4) $\triangle ABC \cong \triangle EDC$
- **4) SAS**
- **15. Given:** $\overline{WX} \parallel \overline{YZ}, \overline{WX} \cong \overline{YZ}$

Prove: $\triangle WXZ \cong \triangle YZX$

- 1) WX | YZ
- 2) $\angle WXZ \cong \angle YZX$

Statements

- 3) $\overline{WX} \cong \overline{YZ}$
- 4) $\overline{ZX} \cong \overline{XZ}$
- 5) $\triangle WXZ \cong \triangle YZX$
- 1) Given

Reasons

- 2) Alternate Interior \triangle are \cong .
- 3) Given
- 4) Reflexive Property
- **5) SAS**
- **16. Error Analysis** $\triangle FGH$ and $\triangle PQR$ are both equilateral triangles. Your friend says this means they are congruent by the SSS Postulate. Is your friend correct? Explain. Incorrect; both triangles being equilateral means that the three angles and sides of each triangle are congruent, but there is no information comparing the side lengths of the two triangles.
- 17. A student is gluing same-sized toothpicks together to make triangles. She plans to use these triangles to make a model of a bridge. Will all the triangles be congruent? Explain your answer. Yes; because all the triangles are made from the same-sized toothpick, all three corresponding sides will be congruent.