\qquad Class \qquad
\qquad

Practice

Triangle Congruence by ASA and AAS

Name two triangles that are congruent by ASA.

1.

2.

3. Developing Proof Complete the proof by filling in the blanks.

Given: $\angle H I J \cong \angle K I J$

$$
\angle I J H \cong \angle I J K
$$

Prove: $\triangle H I J \cong \triangle K I J$

Proof: $\angle H I \cong \cong K I J$ and $\angle I J H \cong \angle I J K$ are given.
$\bar{I} \cong \bar{I}$ by $\xrightarrow{\text { ? }}$. Refl. Prop. of Congruence
So, $\triangle H I J \cong \triangle K I J$ by $\xrightarrow{?}$. ASA
4. Given: $\angle L O M \cong \angle N P M, \overline{L M} \cong \overline{N M}$

Prove: $\triangle L O M \cong \triangle N P M$
Proof: $\angle L O M \cong \angle N P M$ and $\overline{L M} \cong \overline{N M}$ are given.
$\angle L M O \cong \angle N M P$ because vert. \mathbb{E} are \cong. So,
$\triangle L O M \cong \triangle N P M$ by AAS.

5. Given: $\angle B$ and $\angle D$ are right angles.
$\overline{A E}$ bisects $\overline{B D}$
Prove: $\triangle A B C \cong \triangle E D C$

Statements
Reasons

1) $\angle B$ and $\angle D$ are right angles.
2) $\angle B \cong \angle D$
3) $\angle B C A \cong \angle D C E$
4) $\overline{A E}$ bisects $\overline{B D}$
5) $\overline{B C} \cong \overline{C D}$
6) $\triangle A B C \cong \triangle E D C$
7) Given
8) All right angles are congruent.
9) Vertical angles are congruent.
10) Given
11) Def. of bisector
12) ASA
\qquad
\qquad
\qquad

Triangle Congruence by ASA and AAS

6. Developing Proof Complete the proof.

Given: $\angle 1 \cong \angle 2, \overline{A B} \perp \overline{B L}, \overline{K L} \perp \overline{B L}, \overline{A B} \cong \overline{K L}$
Prove: $\triangle A B G \cong \triangle K L G$

Proof:

7. Write a flow proof.

Given: $\angle E \cong \angle H$

$$
\angle H F G \cong \angle E G F
$$

Prove: $\triangle E G F \cong \triangle H F G$

$\underset{\text { Given }}{\angle H F G \cong \angle E G F} \rightarrow \underbrace{\angle E G \cong}_{\text {AAS Theorem }}$
Reflexive Prop. of \cong

Prove: $\triangle J K L \cong \triangle P M L$

Statements	Reasons
$\angle K \cong \angle M$	Given
$\overline{K L} \cong \overline{M L}$	Given
$\angle J L K \cong \angle P L M$	Vert. \triangle are \cong.
$\triangle J K L \cong \triangle P M L$	ASA Postulate

For Exercises 9 and 10, write a paragraph proof.
9. Given: $\angle D \cong \angle G$

$$
\overline{H E} \cong \overline{F E}
$$

Prove: $\triangle E F G \cong \triangle E H D$

$\angle D \cong \angle G$ is given. $\angle D E H \cong \angle G E F$ because vert. $\&$ are $\cong . \overline{H E} \cong \overline{F E}$ is given. So, $\triangle E F G \cong \triangle E H D$ by AAS.
10. Given: $\overline{J M}$ bisects $\angle J$.

$$
\overline{J M} \perp \overline{K L}
$$

Prove: $\triangle J M K \cong \triangle J M L$

$\overline{J M}$ bisects $\angle J$ is given. $\angle K J M \cong \angle L J M$ by def. of an \angle bisector. $J M \cong \overline{J M}$ by the Refl. Prop. of $\cong . J M \perp \overline{K L}$ is given. $\angle L M J$ and $\angle K M J$ are right $₫$ by the def. of perpendicular. Therefore, $\angle L M J \cong \angle K M J$ because all right \measuredangle are \cong. So, $\triangle J M K \cong \triangle J M L$ by ASA.

