
Practice

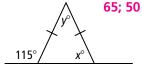
Form G

Isosceles and Equilateral Triangles

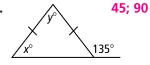
Complete each statement. Explain why it is true.

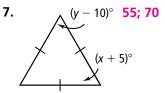
1. ∠DBC ≅ ? ≅ ∠CDB ∠BCD; all the angles of an equilateral triangle are congruent.

2.
$$\angle BED \cong$$
 ?


∠BDE; the base angles of an isosceles triangle are congruent.

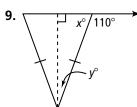
- 3. $\angle FED \cong ? \cong \angle DFE$ $\angle EDF$; all the angles of an equilateral triangle are congruent.
- **4.** $\overline{AB} \cong ? \cong \overline{BE}$

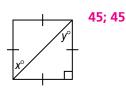

 $\overline{\it EA}$; all the sides of an equilateral triangle are congruent.


Algebra Find the values of x and y.

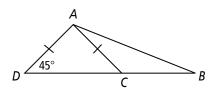
5.

6

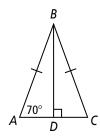



8.

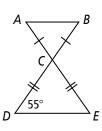
30; 20



- 70; 20 10.



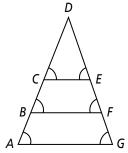
Use the properties of isosceles and equilateral triangles to find the measure of the indicated angle.


11. *m*∠*ACB* **135**

12. *m*∠*DBC* **20**

13. *m*∠*ABC* **55**

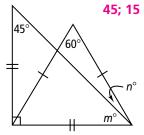
14. Equilateral $\triangle ABC$ and isosceles $\triangle DBC$ share side BC. If $m \angle BDC = 34$ and BD = BC, what is the measure of $\angle ABD$? (*Hint*: it may help to draw the figure described.) **172**

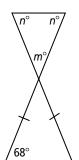

Practice (continued)

Form G

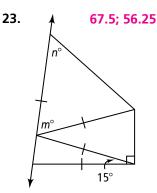
Isosceles and Equilateral Triangles

Use the diagram for Exercises 15-17 to complete each congruence statement. Explain why it is true.


- 15. $\overline{DF}\cong$? \overline{DB} ; Converse of the Isosceles Triangle Theorem
- 16. $\overline{DG}\cong$? \overline{DA} ; Converse of the Isosceles Triangle Theorem


- 17. $\overline{DC} \cong \frac{?}{DE}$; Converse of the Isosceles Triangle Theorem
- 18. The wall at the front entrance to the Rock and Roll Hall of Fame and Museum in Cleveland, Ohio, is an isosceles triangle. The triangle has a vertex angle of 102. What is the measure of the base angles? 39
- **19**. **Reasoning** An exterior angle of an isosceles triangle has the measure 130. Find two possible sets of measures for the angles of the triangle. 50, 50, and 80; 50, 65, and 65
- **20. Open-Ended** Draw a design that uses three equilateral triangles and two isosceles triangles. Label the vertices. List all the congruent sides and angles. Check students' work.

Algebra Find the values of m and n.


21.

22.

44: 68

24. Writing Explain how a corollary is related to a theorem. Use examples from this lesson in making your comparison.

A theorem is a statement that is proven true by a series of steps. A corollary is a statement that can be taken directly from the conclusion of a theorem, usually by applying the theorem to a specific situation. For example, Theorems 4-3 and 4-4 are general statements about all isosceles triangles. Their corollaries apply the theorems to equilateral triangles.