

Draw a triangle that fits the given description. Then construct the centroid and the orthocenter.

12. equilateral $\triangle CDE$ **Sample: See art.**



13. acute isosceles $\triangle XYZ$ **Sample: See art.**

Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

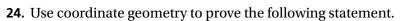
Class Date

Practice (continued)

Medians and Altitudes

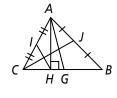
In Exercises 14-18, name each segment.

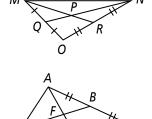
- **14.** a median in $\triangle ABC \subset \Box$
- **15.** an altitude for $\triangle ABC \quad \overline{AH}$
- **16.** a median in $\triangle AHC$ **IH**
- **17.** an altitude for $\triangle AHB$ **AH** or **BH**
- **18.** an altitude for $\triangle AHG$ **AH** or **GH**
- **19.** A(0, 0), B(0, -2), C(-3, 0). Find the orthocenter of $\triangle ABC$. (0, 0)
- 20. Cut a large isosceles triangle out of paper. Paper-fold to construct the medians and the altitudes. How are the altitude to the base and the median to the base related? They are the same.
- **21.** In which kind of triangle is the centroid at the same point as the orthocenter? equilateral
- **22.** *P* is the centroid of $\triangle MNO$. MP = 14x + 8y. Write expressions to represent PR and MR. PR = 7x + 4y; MR = 21x + 12y
- **23.** *F* is the centroid of $\triangle ACE$. $AD = 15x^2 + 3y$. Write expressions to represent AF and FD. $AF = 10x^2 + 2y$; $FD = 5x^2 + y$



Given: $\triangle ABC$; A(c, d), B(c, e), C(f, e)

Sample: The circumcenter is the intersection of the perpendicular bisectors of a triangle. The midpoints of \overline{AB} and \overline{BC} are $(c, \frac{d+e}{2})$ and $(\frac{c+f}{2}, e)$. So, the equations of their perpendicular bisectors are $x = \frac{c+f}{2}$ and $y = \frac{d+e}{2}$. Their intersection is $(\frac{c+f}{2}, \frac{d+e}{2})$, which is the midpoint of AC.





Form G