\qquad Class \qquad Date \qquad

Practice

Medians and Altitudes

In $\triangle A B C, X$ is the centroid.

1. If $C W=15$, find $C X$ and $X W . \quad C X=10 ; X W=5$
2. If $B X=8$, find $B Y$ and $X Y . \quad B Y=12 ; X Y=4$
3. If $X Z=3$, find $A X$ and $A Z . \quad A X=6 ; A Z=9$

Is $\overline{A B}$ a median, an altitude, or neither? Explain.

4.

6.
5. A

7.

Neither; $\overline{A B}$ is not perpendicular to nor does it bisect the opposite side.

Coordinate Geometry Find the orthocenter of $\triangle A B C$.
8. $A(2,0), B(2,4), C(6,0)(2,0)$
9. $A(1,1), B(3,4), C(6,1)(3,3)$
10. Name the centroid. u

11. Name the orthocenter. X

Draw a triangle that fits the given description. Then construct the centroid and the orthocenter.
12. equilateral $\triangle C D E$ Sample: See art.

13. acute isosceles $\triangle X Y Z$ Sample: See art.

\qquad
\qquad
\qquad

Practice (continued)

Medians and Altitudes

In Exercises 14-18, name each segment.

14. a median in $\triangle A B C \overline{C J}$
15. an altitude for $\triangle A B C \quad \overline{A H}$

16. a median in $\triangle A H C \quad \overline{I H}$
17. an altitude for $\triangle A H B \quad \overline{A H}$ or $\overline{B H}$
18. an altitude for $\triangle A H G \quad \overline{A H}$ or $\overline{G H}$
19. $A(0,0), B(0,-2), C(-3,0)$. Find the orthocenter of $\triangle A B C .(0,0)$
20. Cut a large isosceles triangle out of paper. Paper-fold to construct the medians and the altitudes. How are the altitude to the base and the median to the base related? They are the same.
21. In which kind of triangle is the centroid at the same point as the orthocenter? equilateral
22. P is the centroid of $\triangle M N O . M P=14 x+8 y$. Write expressions to represent $P R$ and $M R . P R=7 x+4 y ; M R=21 x+12 y$

23. F is the centroid of $\triangle A C E$. $A D=15 x^{2}+3 y$. Write expressions to represent $A F$ and $F D . A F=10 x^{2}+2 y ; F D=5 x^{2}+y$
24. Use coordinate geometry to prove the following statement.

Given: $\triangle A B C ; A(c, d), B(c, e), C(f, e)$
Prove: The circumcenter of $\triangle A B C$ is a point on the triangle.
Sample: The circumcenter is the intersection of the perpendicular bisectors of a triangle. The midpoints of $\overline{A B}$ and $\overline{B C}$ are ($c, \frac{d+e}{2}$) and ($\frac{c+f}{2}, e$). So, the equations of their perpendicular bisectors are $x=\frac{c+f}{2}$ and $y=\frac{d+e}{2}$. Their intersection is $\left(\frac{c+f}{2}, \frac{d+e}{2}\right)$, which is the midpoint of $A C$.

