Class

Practice

Form G

Indirect Proof

Write the first step of an indirect proof of the given statement.

- 1. A number *g* is divisible by 2. Assume temporarily that *g* is not divisible by 2.
- 2. There are more than three red houses on the block. Assume temporarily that there are at most three red houses on the block.
- **3.** $\triangle ABC$ is equilateral. Assume temporarily that $\triangle ABC$ is not equilateral.
- 4. $m \angle B < 90$ Assume temporarily that $m \angle B \ge 90$.
- **5.** $\angle C$ is not a right angle. Assume temporarily that $\angle C$ is a right angle.
- 6. There are less than 15 pounds of apples in the basket. Assume temporarily that there are 15 or more pounds of apples in the basket.
- If the number ends in 4, then it is not divisible by 5.
 Assume temporarily that a number that ends in 4 is divisible by 5.
- **8.** If $\overline{MN} \cong \overline{NO}$, then point *N* is on the perpendicular bisector of \overline{MO} . Assume temporarily that point *N* is not on the perpendicular bisector of \overline{MO} .
- 9. If two right triangles have congruent hypotenuses and one pair of congruent legs, then the triangles are congruent. Assume temporarily that there are two right triangles that are not congruent but have congruent hypotenuses and one pair of congruent legs.
- 10. If two parallel lines are intersected by a transversal, then alternate interior angles are congruent. Assume temporarily that there are two parallel lines intersected by a transversal, with alternate interior angles that are not congruent.
- **11. Developing Proof** Fill in the blanks to prove the following statement: In right $\triangle ABC$, $m \angle B + m \angle C = 90$.

Given: right $\triangle ABC$

Prove: $m \angle B + m \angle C = 90$

Assume temporarily that $m \angle B + m \angle C \neq 90$. If $m \angle B + m \angle C \neq 90$, then $m \angle A + m \angle B + m \angle C \neq 180$. According to the Triangle Angle-Sum Theorem, $m \angle A + m \angle B + m \angle C = 180$. This contradicts the previous statement, so the temporary assumption is <u>false</u>. Therefore, <u> $m \angle B + m \angle C = 90$ </u>.

12. Use indirect reasoning to eliminate all but one of the following answers. In what year was Barack Obama born? **C**

 A 1809
 B 1909
 C 1961
 D 2000

Name	Cla	ass Date
Practice (continued)		Form G
Indirect Proof		
Identify the two statemen	ts that contradict each oth	ner.
13. I. $\triangle ABC$ is acute.	II. $\triangle ABC$ is scalene.	III. $\triangle ABC$ is equilateral. II and III
14. I. <i>m</i> ∠ <i>B</i> ≤ 90	II. $\angle B$ is acute.	III. $\angle B$ is a right angle. II and III
15. I. $\overline{FA} \parallel \overline{AC}$ II. \overline{FA} and \overline{AC} are skew III. \overline{FA} and \overline{AC} do not i		
II. Victoria has math c	as from 9:00 to 10:00 on Mo lass from 10:30 to 11:30 on lass from 9:00 to 10:00 on M	Mondays.
17. I. $\triangle MNO$ is acute. II II. The centroid and the III. $\triangle MNO$ is equilater	e orthocenter for $\triangle MNO$ a	are at different points.
18. I. $\triangle ABC$ such that $\angle ABC$ such that ABC such that $\angle ABC$ such that ABC such	B is obtuse.	
	ΔABC is outside the trian <i>BC</i> is inside the triangle.	gle. I and III
Write an indirect proof.		
 Prove: CX ⊥ BD Assume temporarily the Then, m∠BXC ≠ 90. m∠BCX + m∠BXC + m If m∠BXC ≠ 90, then the Angle-Sum Theorem y m∠BCX + m∠BXC + m 21. It is raining outside. She Answers may vary. Sa 32°F and it is raining. will be in the form of 	$m \angle XBC \neq 180$. So, $m \angle BXC =$ now that the temperature m mple: Suppose that the tem Because 32°F is the freezin	pendicular. B X $0 + 90 + m \angle BXC.$ $C \neq 180.$ The Triangle $m \angle XBC = 180.$ This contradicts $= 90$ and $\overline{CX} \perp \overline{BD}.$ must be greater than $32^{\circ}F.$ mperature is less than or equal to a point of water, any precipitation in. This contradicts the original