\qquad
\qquad

Practice

Indirect Proof

Write the first step of an indirect proof of the given statement.

1. A number g is divisible by 2 .

Assume temporarily that g is not divisible by 2 .
2. There are more than three red houses on the block.

Assume temporarily that there are at most three red houses on the block.
3. $\triangle A B C$ is equilateral.

Assume temporarily that $\triangle A B C$ is not equilateral.
4. $m \angle B<90$

Assume temporarily that $m \angle B \geq 90$.
5. $\angle C$ is not a right angle.

Assume temporarily that $\angle \mathrm{C}$ is a right angle.
6. There are less than 15 pounds of apples in the basket.

Assume temporarily that there are 15 or more pounds of apples in the basket.
7. If the number ends in 4 , then it is not divisible by 5 .

Assume temporarily that a number that ends in 4 is divisible by 5 .
8. If $\overline{M N} \cong \overline{N O}$, then point N is on the perpendicular bisector of $\overline{M O}$.

Assume temporarily that point N is not on the perpendicular bisector of $\overline{M O}$.
9. If two right triangles have congruent hypotenuses and one pair of congruent legs, then the triangles are congruent. Assume temporarily that there are two right triangles that are not congruent but have congruent hypotenuses and one pair of congruent legs.
10. If two parallel lines are intersected by a transversal, then alternate interior angles are congruent. Assume temporarily that there are two parallel lines intersected by a transversal, with alternate interior angles that are not congruent.
11. Developing Proof Fill in the blanks to prove the following statement: In right $\triangle A B C, m \angle B+m \angle C=90$.
Given: right $\triangle A B C$
Prove: $m \angle B+m \angle C=90$

Assume temporarily that $m \angle B+m \angle C \neq 90$. If $m \angle B+m \angle C \neq 90$, then $m \angle A+m \angle B+m \angle C \neq 180$. According to the Triangle Angle-Sum Theorem, $m \angle A+m \angle B+m \angle C=\underline{180}$. This contradicts the previous statement, so the temporary assumption is false. Therefore, \qquad .
12. Use indirect reasoning to eliminate all but one of the following answers. In what year was Barack Obama born? C
(A) 1809
(B) 1909
(C) 1961
(D) 2000
\qquad
\qquad
\qquad

Practice (continued)

Indirect Proof

Identify the two statements that contradict each other.

13. I. $\triangle A B C$ is acute.
II. $\triangle A B C$ is scalene.
III. $\triangle A B C$ is equilateral. II and III
14. I. $m \angle B \leq 90$
II. $\angle B$ is acute.
III. $\angle B$ is a right angle. II and III
15. I. $\overline{F A} \| \overline{A C}$
II. $\overline{F A}$ and $\overline{A C}$ are skew.
III. $\overline{F A}$ and $\overline{A C}$ do not intersect. I and II
16. I. Victoria has art class from 9:00 to 10:00 on Mondays. I and III
II. Victoria has math class from 10:30 to 11:30 on Mondays.
III. Victoria has math class from 9:00 to 10:00 on Mondays.
17. I. $\triangle M N O$ is acute. II and III
II. The centroid and the orthocenter for $\triangle M N O$ are at different points.
III. $\triangle M N O$ is equilateral.
18. I. $\triangle A B C$ such that $\angle A$ is obtuse. I and II
II. $\triangle A B C$ such that $\angle B$ is obtuse.
III. $\triangle A B C$ such that $\angle C$ is acute.
19. I. The orthocenter for $\triangle A B C$ is outside the triangle. I and III
II. The median for $\triangle A B C$ is inside the triangle.
III. $\triangle A B C$ is an acute triangle.

Write an indirect proof.

20. Given: $m \angle X C D=30, m \angle B C X=60, \angle X C D \cong \angle X B C$

Prove: $\overline{C X} \perp \overline{B D}$
Assume temporarily that $\overline{C X}$ and $\overline{B D}$ are not perpendicular.
Then, $m \angle B X C \neq 90$.

$m \angle B C X+m \angle B X C+m \angle X B C=60+m \angle B X C+30+90+m \angle B X C$.
If $m \angle B X C \neq 90$, then $m \angle B C X+m \angle B X C+m \angle X B C \neq 180$. The Triangle
Angle-Sum Theorem yields $m \angle B C X+m \angle B X C+m \angle X B C=180$. This contradicts
$m \angle B C X+m \angle B X C+m \angle X B C \neq 180$. So, $m \angle B X C=90$ and $\overline{C X} \perp \overline{B D}$.
21. It is raining outside. Show that the temperature must be greater than $32^{\circ} \mathrm{F}$.

Answers may vary. Sample: Suppose that the temperature is less than or equal to $32^{\circ} \mathrm{F}$ and it is raining. Because $32^{\circ} \mathrm{F}$ is the freezing point of water, any precipitation will be in the form of sleet, snow, or freezing rain. This contradicts the original statement. Therefore, the temperature must be above $32^{\circ} \mathrm{F}$ for it to rain.

