Name _____

Chapter 1 Review

Sections 1-1 thru 1-4

Simplify the expression.

1
$$8^{\frac{2}{3}}$$
A) 16
B) 24

2
$$(3a^{\frac{5}{4}} \cdot 6b^{\frac{1}{3}})(a^{\frac{1}{4}} \cdot 3b^{\frac{1}{6}})$$

3 What is the simplified form of the expression? $\sqrt[5]{243}$

D)
$$\sqrt{243}$$

What is each expression written using each base only once?

4
$$(6.16)^{-9} \cdot (6.16)^{10}$$

$$5 (-8)^{-9} \cdot (-8)^{10}$$

6
$$11^{10} \cdot 11^7 \cdot 11^{-1}$$

What is the simplified form of each expression?

$$7 6x^{-4} \cdot 3x^{7}$$

$$8 (-2k^4) \cdot 4j^2 \cdot 4k^3$$

9
$$3x^6 \cdot 5x^{10}$$

$$10 \quad -4x^2 \cdot 3y^{-5} \cdot 2y^4 \cdot 5x^{-8}$$

Find the simplified form of the expression. Give your answer in scientific notation.

11
$$(6 \times 10^{1})(9 \times 10^{10})$$

12
$$(3 \times 10^2)(7 \times 10^{-6})$$

13 Last year, a large trucking company delivered 6.5×10^5 tons of goods with an average value of \$30,000 per ton. What was the total value of the goods delivered? Write the answer in scientific notation.

What is the simplified form of the expression?

14
$$(p^{\frac{5}{6}})^{\frac{1}{5}}$$

$$15 \quad p^2 \left(p^3\right)^1$$

$$(p^4)^2$$

$$17 \quad \left(3x^3\right) \left(-6x^{\frac{1}{2}}\right)$$

$$18 \quad k^4 \left(k^{\frac{7}{5}} \right)^{-5}$$

What is the simplified form of each expression?

19
$$(4h^2)^3$$

20
$$(-3g^4h^4)^4(g^5h^6)^3$$

$$21 (10q^8)^{-4}$$

22
$$(-h^6)^3$$

23
$$(3a^2b^4)^3(2a^5b^6)^3$$

Suppose a white dwarf star has a diameter of approximately 1.6692×10^4 km. Use the formula $4\pi r^2$ to find the approximate surface area of the star.

What is the simplified form of each expression?

$$25 \quad \frac{t^7}{t^2}$$

$$26 \quad \frac{y^{-10}}{y^4}$$

$$27 \quad \frac{m^{-8}n^{-3}}{m^{-14}n^8}$$

- Scientists believe that there is an extremely massive black hole at the center of the Milky Way. How many times more massive than the Sun would a black hole with a mass of 6.77×10^{36} kg be? The mass of the Sun is approximately 1.99×10^{30} kg.
- Astronomers measure large distances in light-years. One light-year is the distance that light can travel in one year, or approximately 5.88×10^{12} miles. Suppose a star is 4.9×10^{2} light-years from Earth. In scientific notation, approximately how many miles is it?

What is the simplified form of the expression?

$$30 \quad \left(\frac{3m^2}{8j^5}\right)^3$$

31
$$\left(\frac{3k}{4}\right)^3$$

$$32 \quad \left(\frac{1}{3j^7}\right)^3$$

$$33 \quad \left(\frac{3t^4}{5j^5}\right)^{-3}$$

$$34 \quad \left(\frac{t^3}{2y^4}\right)^{-2}$$

$$35 \quad \left(\frac{m^{-2}m^7}{m^{-5}}\right)^{-3}$$

36 Write the exponential expression $4x^{\frac{4}{9}}$ in radical form.

- Kepler's Third Law of Orbital Motion states that you can approximate the period P (in Earth years) it takes a planet to complete one orbit of the sun using the function $P = d^{\frac{3}{2}}$, where d is the distance (in astronomical units, AU) from the planet to the sun. How many Earth years would it take for a planet that is 3.96 AU from the sun?
- When you simplify an algebraic expression like $a^{\frac{5}{2}} \cdot a^{\frac{1}{4}}$, you know that the bases of the expressions must be the same. You also need to rewrite the exponents so that they have a common denominator. Explain why you need to find the common denominator to simplify.
- 39 Suppose a spherical asteroid has a radius of approximately 1.8×10^3 m. Use the formula $\left(\frac{4}{3}\right) \pi r^3$ to find the approximate volume of the asteroid.
- 40 Write the radical expression $\frac{4}{\sqrt[3]{x^{11}}}$ in exponential form.