H-3
 Hyperbolas

What you'll learn about

- Geometry of a Hyperbola
- Translations of Hyperbolas
- Eccentricity and Orbits
- Reflective Property of a Hyperbola
- Long-Range Navigation
... and why
The hyperbola is the least known conic section, yet it is used astronomy, optics, and navigation.

Hyperbola

A hyperbola is the set of all points in a plane whose distances from two fixed points in the plane have a constant difference. The fixed points are the foci of the hyperbola. The line through the foci is the focal axis. The point on the focal axis midway between the foci is the center. The points where the hyperbola intersects its focal axis are the vertices of the hyperbola.

Hyperbola

Hyperbola

Hyperbola with Center (0,0)

- Standard equation
- Focal axis
- Foci
- Vertices
- Semitransverse axis
- Semiconjugate axis
- Pythagorean relation
- Asymptotes

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

$$
\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1
$$

x-axis
y-axis
$(\pm c, 0)$
$(0, \pm c)$
$(\pm a, 0)$
$(0, \pm a)$
a
a
b
$c^{2}=a^{2}+b^{2}$
$c^{2}=a^{2}+b^{2}$
$y= \pm \frac{b}{a} x$
$y= \pm \frac{a}{b} x$

Hyperbola Centered at (0,0)

(a)

(b)

Example Finding the Vertices and Foci of a Hyperbola

Find the vertices and the foci of the hyperbola $9 x^{2}-4 y^{2}=36$.

Example Finding the Vertices and Foci of a Hyperbola

Find the vertices and the foci of the hyperbola $9 x^{2}-4 y^{2}=36$.

Divide both sides of the equation by 36 to find the standard form $\quad \frac{x^{2}}{4}-\frac{y^{2}}{9}=36$.
So $a^{2}=4, b^{2}=9$, and $c^{2}=a^{2}+b^{2}=13$. Thus the vertices are $(\pm 2,0)$ and the foci are $(\pm \sqrt{13}, 0)$.

Example Finding an Equation of a Hyperbola

Find an equation of the hyperbola with foci $(0,4)$ and $(0,-4)$ whose conjugate axis has length 2.

Example Finding an Equation of a Hyperbola

Find an equation of the hyperbola with foci $(0,4)$ and $(0,-4)$ whose conjugate axis has length 2.

The center is at $(0,0)$. The foci are on the y-axis with $c=4$.
The semiconjugate axis is $b=2 / 2=1$.
Thus $a^{2}=c^{2}-b^{2}=16-1=15$.
The standard form of the hyperbola is $\frac{y^{2}}{15}-\frac{x^{2}}{1}=1$.

Hyperbola with Center (h, k)

- Standard equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

- Focal axis

$$
y=k
$$

$$
x=h
$$

- Foci
$(h \pm c, k)$
$(h, k \pm c)$
- Vertices
($h \pm a, k$)
($h, k \pm a$)
- Semimajor axis
a
a
- Semiminor axis
b
b
- Pythagorean relation
- Asymptotes

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
y= \pm \frac{b}{a}(x-h)+k
\end{gathered}
$$

$$
c^{2}=a^{2}+b^{2}
$$

$$
y= \pm \frac{a}{b}(x-h)+k
$$

Hyperbola with Center (h, k)

(a)

(b)

Example Finding an Equation of a Hyperbola

Find the standard form of the equation for the hyperbola whose conjugate axis has endpoints ($-1,4$) and $(5,4)$, and where the transverse axis has length 8 .

Example Finding an Equation of a Hyperbola

Find the standard form of the equation for the hyperbola whose conjugate axis has endpoints ($-1,4$) and $(5,4)$, and where the transverse axis has length 8 .

The figure shows the hyperbola $\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$
Center is midpoint of minor axis, (2, 4).

Example Finding an Equation of a Hyperbola

The semiminor axis and semimajor axis are

$$
a=\frac{8}{2}=4 \text { and } b=\frac{5-(-1)}{2}=3
$$

The equation we seek is

$$
\begin{aligned}
& \frac{(y-4)^{2}}{4^{2}}-\frac{(x-2)^{2}}{3^{2}}=1 \\
& \frac{(y-4)^{2}}{16}-\frac{(x-2)^{2}}{9}=1
\end{aligned}
$$

Example Locating Key Points of a Hyperbola

Find the center, vertices, and foci of the hyperbola

$$
\frac{(x+1)^{2}}{4}-\frac{y^{2}}{9}=1
$$

Example Locating Key Points of a Hyperbola

Find the center, vertices, and foci of the hyperbola $\frac{(x+1)^{2}}{4}-\frac{y^{2}}{9}=1$.

The center $(h, k)=(-1,0)$. Because the semitransverse axis $a=\sqrt{4}=2$, the vertices are at $(h \pm a, k)=(-1 \pm 2,0)$ or $(-3,0)$ and $(1,0)$. Because $c=\sqrt{a^{2}+b^{2}}=\sqrt{4+9}=\sqrt{13}$, the foci are at $(h \pm c, k)=(-1 \pm \sqrt{13}, 0)$ or approximately $(2.61,0)$ and $(-4.61,0)$.

Eccentricity of a Hyperbola

The eccentricity of a hyperbola is $e=\frac{c}{a}=\frac{\sqrt{a^{2}+b^{2}}}{a}$,
where a is the semitransverse axis, b is the semiconjugate axis, and c is the distance from the center to either focus.

Quick Review

1. Find the distance between the points (a, b) and $(c, 4)$.
2. Solve for y in terms of $x . \frac{y^{2}}{16}-\frac{x^{2}}{2}=1$

Solve for x algebraically.
3. $\sqrt{3 x+12}-\sqrt{3 x-8}=10$
4. $\sqrt{6 x^{2}+12}-\sqrt{6 x^{2}-1}=1$
5. Solve the system of equations:
$c-a=2$
$c^{2}-a^{2}=16 a / c$

Quick Review Solutions

1. Find the distance between the points (a, b) and $(c, 4)$.
$\sqrt{(a-c)^{2}+(b-4)^{2}}$
2. Solve for y in terms of $x \cdot \frac{y^{2}}{16}-\frac{x^{2}}{2}=1 \quad y= \pm \sqrt{8 x^{2}+16}$

Solve for x algebraically.
3. $\sqrt{3 x+12}-\sqrt{3 x-8}=10$ no solution
4. $\sqrt{6 x^{2}+12}-\sqrt{6 x^{2}-1}=1 \quad x= \pm \frac{\sqrt{222}}{6}$
5. Solve the system of equations:
$c-a=2$
$c^{2}-a^{2}=16 a / c \quad$ no solution

