Practice: Section 1-2 WS

/58

Form G

More Multiplication Properties of Exponents

Simplify each expression.

1.
$$(z^5)^3$$

2.
$$(m^4)^{10}$$

3.
$$(v^7)^{\frac{1}{2}}$$

4.
$$(k^{\frac{4}{3}})^3$$

5.
$$(x^7)^{-2}$$

6.
$$\left(r^{\frac{1}{4}}\right)^{-6}$$

7.
$$b(b^{-8})^{-3}$$

8.
$$h^2(h^7)$$

9.
$$(m^2)^{\frac{3}{2}}n^{\frac{1}{7}}$$

10.
$$(x^6)^2(y^3)^0$$

11.
$$(g^5)^{-5}(g^6)^{-2}$$
 12. $(v^2)^3(w^4)^{\frac{1}{3}}$

12.
$$(v^2)^3(w^4)^{\frac{1}{3}}$$

13.
$$(6a)^4$$

14.
$$(5f)^{-3}$$

15.
$$(9z)^{\frac{1}{2}}$$

16.
$$(10m^3)^{-2}$$

17.
$$(6j^{-2})^{-3}$$

18.
$$(9d^{10})^{-2}$$

19.
$$(gh)^0$$

20.
$$(qr^6)^{\frac{1}{2}}$$

21.
$$(4a^3)^2a^5$$

21.
$$(4a^3)^2a^5$$
 22. $\left(m^{\frac{4}{7}}n^3\right)^7(m^4)^3$ **23.** $(xy^2)(xy^2)^{-1}$ **24.** $z(y^{-5}z^7)^{-1}y^{-5}$

23.
$$(xy^2)(xy^2)^{-1}$$

24.
$$z(y^{-5}z^7)^{-1}y^{-5}$$

25.
$$(7t^{-3})^3 \left(s^5t^{\frac{1}{4}}\right)^2$$
 26. $m^{-9}(m^{-1}n)^{\frac{1}{2}}n^8$ **27.** $(3b^{-4}c^{-2})^6c^3$ **28.** $5x^{-5}y^2(2x^{-14})^2$

26.
$$m^{-9}(m^{-1}n)^{\frac{1}{2}}n^8$$

27.
$$(3b^{-4}c^{-2})^6c^{-2}$$

28.
$$5x^{-5}y^2(2x^{-14})^2$$

Simplify. Write each answer in scientific notation.

29.
$$(5 \times 10^7)^2$$

30.
$$(2 \times 10^4)^6$$

31.
$$(9 \times 10^{-12})^2$$

32.
$$(3 \times 10^{-8})^3$$

33.
$$(3.6 \times 10^5)^2$$

34.
$$(9.3 \times 10^{-6})^{-2}$$
 35. $(1.7 \times 10^{-8})^3$

35.
$$(1.7 \times 10^{-8})^3$$

36.
$$(6.24 \times 10^{13})^3$$

- **37.** The radius of a cylinder is 5.4×10^6 cm. The height of the cylinder is 2.5×10^3 cm. What is the volume of the cylinder? (Hint: $V = \pi r^2 h$)
- **38.** The side length of a square is 9.6×10^5 in. What is the area of the square?
- **39.** The side length of a cube is 3.78×10^3 ft. What is the volume of the cube?

Practice (continued)

Form G

More Multiplication Properties of Exponents

Complete each equation.

40.
$$(p^4)^{\square} = p^8$$

41.
$$(z^{\square})^6 = z^{-24}$$

42.
$$(t^{12})^{\square} = 1$$

43.
$$(w^3)^{\square} = w^{-12}$$

44.
$$(n^{-8})^{\square} = n$$

45.
$$10(g^2)^{\square} = 10g^6$$

46.
$$(3a^{\square})^3 = 27a^{\frac{3}{2}}$$

47.
$$(6q^4r^{\square})^2 = 36q^8$$

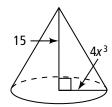
48.
$$(x^4y^3)^{\square} = \frac{1}{x^8y^6}$$

49. Writing Is $(y^m)^n = (y^n)^m$ a true statement? Explain your reasoning.

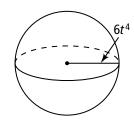
50. Reasoning What is the difference between x^4x^3 and $(x^4)^3$? Justify your answer.

Simplify each expression.

51.
$$2^3(2m)^2$$


53.
$$\left(d^{\frac{2}{3}}\right)^{-5}d^3$$

54.
$$(-7p)^3 + 7p^3$$


55.
$$4a\left(0^{\frac{1}{2}}\right)b^4(-b)^{-7}$$

56.
$$(10^{-5})^3(9.9 \times 10^{-12})^2$$

57. The volume of a circular cone can be determined by the formula $V = \frac{1}{3} 3.14 r^2 h$, where r is the radius of the base and h is the height of the cone. Find the volume of the cone shown at the right in terms of x.

58. The volume of a sphere can be determined by the formula $V = \frac{4}{3} 3.14 r^3$, where *r* is the radius. Find the volume of the sphere shown at the right in terms of *t*.

