Name	Class	Date	
Practice		Form G	
The Quadratic Formula	and the Discriminant		
Use the quadratic formula to solve each equation.			
1. $7c^2 + 8c + 1 = 0$	2. $2w^2 - 28w = -98$	3. $2j^2 - 3j = -1$	
4. $2x^2 - 6x + 4 = 0$	5. $2n^2 - 6n = 8$	6. $-7d^2 + 2d + 9 = 0$	
7. $2a^2 + 4a - 6 = 0$	8. $-3p^2 + 17p = 20$	9. $4d^2 - 8d + 3 = 0$	

Use the quadratic formula to solve each equation. Round answers to the nearest hundredth.

- **10.** $h^2 2h 2 = 0$ **11.** $5x^2 + 3x = 1$ **12.** $-z^2 4z = -2$
- **13.** $t^2 + 10t = -22$ **14.** $3n^2 + 10n = 5$ **15.** $s^2 10s + 14 = 0$
- 16. A basketball is passed through the air. The height h of the ball in feet after the distance *d* in feet the ball travels horizontally is given by $h = -d^2 + 10d + 5$. How far horizontally from the player passing the ball will the ball land on the ground?

Which method(s) would you choose to solve each equation? Justify your reasoning.

17. $h^2 + 4h + 7 = 0$ **18.** $a^2 - 4a - 12 = 0$ **19.** $24y^2 - 11y - 14 = 0$ **20.** $2p^2 - 7p - 4 = 0$ **21.** $4x^2 - 144 = 0$ **22.** $f^2 - 2f - 35 = 0$

23. Writing Explain how the discriminant can be used to determine the number of solutions a quadratic equation has.

Name	Class	Date
Practice (continued)		Form G
The Quadratic Formula and	the Discriminant	
Find the number of real-numb	per solutions of each equation	
24. $x^2 - 8x + 7 = 0$	25. $x^2 - 6x = 0$	26. $2x^2 - 5x + 16 = 0$

Use any method to solve each equation. If necessary, round answers to the nearest hundredth.

30. $5m^2 - 3m - 15 = 0$ **31.** $9y^2 + 6y = -12$ **32.** $4a^2 = 36$ **33.** $6t^2 - 96 = 0$ **34.** $z^2 + 7z = -10$ **35.** $-g^2 + 4g + 3 = 0$

27. $-3x^2 - 4x - 8 = 0$ **28.** $7x^2 + 12x - 21 = 0$ **29.** $2x^2 + 4x + 2 = 0$

Find the value of the discriminant and the number of real-number solutions of each equation.

- **36.** $x^2 + 11x 10 = 0$ **37.** $x^2 + 7x + 8 = 0$ **38.** $3x^2 + 5x 9 = 0$
- **39.** $-2x^2 + 10x 1 = 0$ **40.** $3x^2 + 6x + 3 = 0$ **41.** $6x^2 + x + 12 = 0$
- **42**. The weekly profit of a company is modeled by the function $w = -g^2 + 120g 28$. The weekly profit, w, is dependent on the number of gizmos, g, sold. If the break-even point is when w = 0, how many gizmos must the company sell each week in order to break even?
- **43. Reasoning** The equation $4x^2 + bx + 9 = 0$ has no real-number solutions. What must be true about *b*?
- **44. Open-Ended** Describe three different methods to solve $x^2 x 56 = 0$. Tell which method you prefer. Explain your reasoning.