Section 4-3 WS

Name:

Piecewise Functions Secondary Math 2 Honors

Part I. Carefully graph each of the following. Identify whether or not he graph is a function. Then, evaluate the graph at any specified domain value. You may use your calculators to help you graph, but you must sketch it carefully on the grid!

1.
$$f(x) = \begin{cases} x+5 & x < -2 \\ -2x-1 & x \ge -2 \end{cases}$$

Function? Yes or No

f(3) =

f(-4) =

2.
$$f(x) = \begin{cases} 2x+1 & x \ge 1 \\ \frac{x}{2}-3 & x < 1 \end{cases}$$

Function? Yes or No

$$f(-2) =$$

f (6) =

$$f(1) =$$

3.
$$f(x) = \begin{cases} 4x - 2 & x \ge 2 \\ -\frac{x}{3} + 4 & x < 2 \end{cases}$$

Function? Yes or No

f (8) =

f (2) =

4.
$$f(x) = \begin{cases} -x+4 & x \le 0\\ \frac{2x}{3}-1 & 0 < x \le 5\\ 2 & x > 5 \end{cases}$$

Function? Yes or No

$$f(0) =$$

$$f(5) =$$

5.
$$f(x) = \begin{cases} -x+1 & x \le 0\\ -\frac{4x}{3} - 4 & x > 0 \end{cases}$$

Function? Yes or No

f(3) =

6.
$$f(x) = \begin{cases} -3 & x \le 3\\ 2x - 5 & x > 3 \end{cases}$$

Function? Yes or No
$$f(-4) =$$

$$f(0) =$$

$$f(3) =$$

Part II. Write equations for the piecewise functions whose graphs are shown below. Assume that the units are 1 for every tic marc.

10.

Name

Practice

Form G

Piecewise Functions

1. Graph the function $f(x) = \begin{cases} 2x - 4, & \text{for } x \ge 3\\ -x^2 + 2, & \text{for } x < 3 \end{cases}$

2. Write a piecewise function that represents the graph shown below.

3. Consider the absolute value function f(x) = -2|x-4| + 8. **a.** Graph the function.

b. What is the piecewise definition for the graph?

Name	Class	Date	
Practice (continued)		Fori	тG

Piecewise Functions

4. The graph of f(x) is given below. What is the graph of g(x) = f(x - 2)?

5. What is the graph of the step function $f(x) = 2 \lfloor x - 3 \rfloor$?

6. Reasoning Define the greatest integer function $f(x) = \lceil x \rceil$ in your own words. Then use the definition to explain how you know where to place closed circles and open circles when graphing a greatest integer function.